Very well-covered graphs with log-concave independence polynomials

نویسندگان

  • Vadim E. Levit
  • Eugen Mandrescu
چکیده

If sk equals the number of stable sets of cardinality k in the graph G, then I(G; x) = α(G) ∑ k=0 skx k is the independence polynomial of G (Gutman and Harary, 1983). Alavi, Malde, Schwenk and Erdös (1987) conjectured that I(G; x) is unimodal whenever G is a forest, while Brown, Dilcher and Nowakowski (2000) conjectured that I(G; x) is unimodal for any well-covered graph G. Michael and Traves (2003) showed that the assertion is false for well-covered graphs with α(G) ≥ 4, while for very well-covered graphs the conjecture is still open. In this paper we give support to both conjectures by demonstrating that if α(G) ≤ 3, or G ∈ {K1,n, Pn : n ≥ 1}, then I(G; x) is log-concave, and, hence, unimodal (where G is the very well-covered graph obtained from G by appending a single pendant edge to each vertex).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The unimodality of independence polynomials of some graphs

In this paper we study unimodality problems for the independence polynomial of a graph, including unimodality, log-concavity and reality of zeros. We establish recurrence relations and give factorizations of independence polynomials for certain classes of graphs. As applications we settle some unimodality conjectures and problems. © 2010 Elsevier Ltd. All rights reserved.

متن کامل

On the independence polynomial of an antiregular graph

A graph with at most two vertices of the same degree is called antiregular [25], maximally nonregular [32] or quasiperfect [2]. If sk is the number of independent sets of cardinality k in a graph G, then I(G;x) = s0 + s1x+ ...+ sαx α is the independence polynomial of G [10], where α = α(G) is the size of a maximum independent set. In this paper we derive closed formulae for the independence pol...

متن کامل

On the unimodality of independence polynomials of very well-covered graphs

The independence polynomial i(G, x) of a graph G is the generating function of the numbers of independent sets of each size. A graph of order n is very well-covered if every maximal independent set has size n/2. Levit and Mandrescu conjectured that the independence polynomial of every very well-covered graph is unimodal (that is, the sequence of coefficients is nondecreasing, then nonincreasing...

متن کامل

On the independence polynomials of path-like graphs

We investigate the independence polynomials of members of various infinite families of path-like graphs, showing that the coefficient sequences of such polynomials are logarithmically concave.

متن کامل

Graph products with log-concave independence polynomials

A stable set in a graph G is a set of pairwise non-adjacent vertices. The independence polynomial of G is I(G;x) = s0+s1x+s2x 2 +...+sαx α , where α = α(G) is the cardinality of a maximum stable of G, while sk equals the number of stable sets of size k in G (Gutman and Harary, 1983). Hamidoune, 1990, showed that for every claw-free graph G (i.e., a graph having no induced subgraph isomorphic to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004